Toxicity of Organometal(loids)
نویسندگان
چکیده
Copyright © 2012 Elke Dopp et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Biomethylation of metals and metalloids is a process ubiquitously occurring in the environment (under aerobic and anaerobic conditions), which leads to the formation of chemical species with significantly higher mobility and altered toxicity. The alkylation of inorganic metal(loid)s through transfer , for example, of methyl groups, is a significant factor in the biogeochemical cycling of the metal(loid) elements. Bio-methylation has been described in natural systems for arse-and thallium under laboratory conditions. In this special issue biomethylation products of arsenic, bismuth, mercury, lead, and tin are of special interest. Of all metal(loid) species in environmental systems, the element arsenic received the greatest attention worldwide. In this issue, recent research on influences of arsenic methylation on toxicity of arsenic species (M. Hall and M. Gamble), modes of action of arsenic metabolites in human cells (Bartel et al.), and the toxicity of volatile arsenic species compared to volatile species of bismuth, mercury, and tin (E. Dopp et al.) will be presented. Anthropogenic water pollution by butyltin biocides is a well-documented and a severe environmental problem. Its distribution and accumulation in aquatic organisms and also within the food chain leads to biological effects in different organisms. The immunotoxic effects in mammalian cells is highlighted in this special issue by H. Krug. Beside carcinogenic and immunotoxic effects, organo-metal(loid)s can exert neurotoxicity. The best known neuro-toxic metal(loid) is methylmercury (MeHg). MeHg affects both, the developing and the mature central nervous systems. Several epidemics resulting from the consumption of food contaminated by MeHg have shown the disastrous effects on living organisms. Mechanisms associated with MeHg exposure and neurotoxic effects are described by P. Kaur et al. in this issue. It has to be considered that humans not only are exposed to metal(loid) compounds from the environment via inhalation and ingestion, but may also be able to generate these species by endogenous enzymes or/and biomethylation in the colon. Methanoarchaea have an outstanding capability to methylate numerous metal(loid)s therefore producing toxic and highly mobile derivatives which might influence human health. Interesting studies in this field were carried out by the group of R. Hensel and new results are presented in this issue by B. Bialek et al. and B. Huber et al. …
منابع مشابه
Questions concerning environmental mobility of arsenic: needs for a chemical data base and means for speciation of trace organoarsenicals.
Biomethylation of metals, including arsenic, apparently occurs as a global process. Health control strategies therefore depend on accurate analysis of arsenic's environmental mobility. Determining to what extent biotransformations occur and how resultant organometal(loids) are sequestered in food chains requires sophistication beyond present-day total element determinations. Rather, active mole...
متن کاملThe interaction of tributyllead with lysosomes from rat liver.
The interactions of tributyllead with lysosomes from rat liver have been studied. It results that the organometal compound induces a fast alkalinization in energized lysosomes. The interpretation is that the compound is a potent proton carrier. This function could explain the toxicity, in particular at neurological level of the compound.
متن کاملThe Electrical and Optical Properties of Organometal Halide Perovskites Relevant to Optoelectronic Performance.
Organometal halide perovskites are under intense study for use in optoelectronics. Methylammonium and formamidinium lead iodide show impressive performance as photovoltaic materials; a premise that has spurred investigations into light-emitting devices and photodetectors. Herein, the optical and electrical material properties of organometal halide perovskites are reviewed. An overview is given ...
متن کاملPressure-Induced Structural Evolution and Band Gap Shifts of Organometal Halide Perovskite-Based Methylammonium Lead Chloride.
Organometal halide perovskites are promising materials for optoelectronic devices. Further development of these devices requires a deep understanding of their fundamental structure-property relationships. The effect of pressure on the structural evolution and band gap shifts of methylammonium lead chloride (MAPbCl3) was investigated systematically. Synchrotron X-ray diffraction and Raman experi...
متن کاملFerroelectric Domain Wall Induced Band Gap Reduction and Charge Separation in Organometal Halide Perovskites.
Organometal halide perovskites have been intensely studied in the past 5 years, inspired by their certified high photovoltaic power conversion efficiency. Some of these materials are room-temperature ferroelectrics. The presence of switchable ferroelectric domains in methylammonium lead triiodide, CH3NH3PbI3, has recently been observed via piezoresponse force microscopy. Here, we focus on the s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2012 شماره
صفحات -
تاریخ انتشار 2012